With the increasing variations of face presentation attacks, model generalization becomes an essential challenge for a practical face anti-spoofing system. This paper presents a generalized face anti-spoofing framework that consists of three tasks: depth estimation, face parsing, and live/spoof classification. With the pixel-wise supervision from the face parsing and depth estimation tasks, the regularized features can better distinguish spoof faces. While simulating domain shift with meta-learning techniques, the proposed one-side triplet loss can further improve the generalization capability by a large margin. Extensive experiments on four public datasets demonstrate that the proposed framework and training strategies are more effective than previous works for model generalization to unseen domains.
translated by 谷歌翻译
Although significant progress has been made in face recognition, demographic bias still exists in face recognition systems. For instance, it usually happens that the face recognition performance for a certain demographic group is lower than the others. In this paper, we propose MixFairFace framework to improve the fairness in face recognition models. First of all, we argue that the commonly used attribute-based fairness metric is not appropriate for face recognition. A face recognition system can only be considered fair while every person has a close performance. Hence, we propose a new evaluation protocol to fairly evaluate the fairness performance of different approaches. Different from previous approaches that require sensitive attribute labels such as race and gender for reducing the demographic bias, we aim at addressing the identity bias in face representation, i.e., the performance inconsistency between different identities, without the need for sensitive attribute labels. To this end, we propose MixFair Adapter to determine and reduce the identity bias of training samples. Our extensive experiments demonstrate that our MixFairFace approach achieves state-of-the-art fairness performance on all benchmark datasets.
translated by 谷歌翻译
目前最先进的基于深度学习的面部识别(FR)模型需要大量的核心训练身份。然而,由于隐私意识不断增长,禁止访问用户设备上的面部图像以不断改进面部识别模型。联合学习(FL)是一种解决隐私问题的技术,可以在不共享客户端之间的数据的情况下协作优化模型。在这项工作中,我们提出了一个基于FLIS的框架,称为FEDFR,以通过隐私感知方式改进通用面部表示。此外,该框架通过所提出的解耦特征定制模块共同优化相应客户端的个性化模型。客户特定的个性化模型可以服务于本地设备的注册标识所需的优化面部识别体验。据我们所知,我们是第一个探索FL Setup中的个性化脸部识别的人。拟议的框架被验证,优于以前的几种通用和个性化的面部识别基准与多种情景的识别基准。源代码和我们提出的个性化FR基准下的FL Setup可用于https://github.com/jackie840129/fedfr。
translated by 谷歌翻译
深入学习方法通​​过用非常大的面部图像数据集训练模型来实现高度准确的人脸识别。与大型2D面部图像数据集的可用性不同,公众缺少大型3D面部数据集。现有的公共3D面部数据集通常收集有很少的科目,导致过度拟合的问题。本文提出了两个CNN模型来提高RGB-D面部识别任务。首先是分割感知深度估计网络,称为DepthNet,其通过包括用于更准确的面部区域定位的语义分段信息来估计来自RGB面部图像的深度映射。另一种是一种新的掩模引导RGB-D面识别模型,其包含RGB识别分支,深度图识别分支和具有空间注意模块的辅助分割掩模分支。我们的深度用于将大型2D面部图像数据集增强到大RGB-D面部数据集,用于训练精确的RGB-D面识别模型。此外,所提出的掩模引导的RGB-D面识别模型可以充分利用深度图和分割掩模信息,并且比以前的方法更稳健地对姿势变化。我们的实验结果表明,DepthNet可以通过分割掩模从面部图像产生更可靠的深度图。我们的掩模引导的面部识别模型优于几个公共3D面部数据集上的最先进方法。
translated by 谷歌翻译
With the fast development of big data, it has been easier than before to learn the optimal decision rule by updating the decision rule recursively and making online decisions. We study the online statistical inference of model parameters in a contextual bandit framework of sequential decision-making. We propose a general framework for online and adaptive data collection environment that can update decision rules via weighted stochastic gradient descent. We allow different weighting schemes of the stochastic gradient and establish the asymptotic normality of the parameter estimator. Our proposed estimator significantly improves the asymptotic efficiency over the previous averaged SGD approach via inverse probability weights. We also conduct an optimality analysis on the weights in a linear regression setting. We provide a Bahadur representation of the proposed estimator and show that the remainder term in the Bahadur representation entails a slower convergence rate compared to classical SGD due to the adaptive data collection.
translated by 谷歌翻译
Model counting is a fundamental problem which has been influential in many applications, from artificial intelligence to formal verification. Due to the intrinsic hardness of model counting, approximate techniques have been developed to solve real-world instances of model counting. This paper designs a new anytime approach called PartialKC for approximate model counting. The idea is a form of partial knowledge compilation to provide an unbiased estimate of the model count which can converge to the exact count. Our empirical analysis demonstrates that PartialKC achieves significant scalability and accuracy over prior state-of-the-art approximate counters, including satss and STS. Interestingly, the empirical results show that PartialKC reaches convergence for many instances and therefore provides exact model counting performance comparable to state-of-the-art exact counters.
translated by 谷歌翻译
Robots are traditionally bounded by a fixed embodiment during their operational lifetime, which limits their ability to adapt to their surroundings. Co-optimizing control and morphology of a robot, however, is often inefficient due to the complex interplay between the controller and morphology. In this paper, we propose a learning-based control method that can inherently take morphology into consideration such that once the control policy is trained in the simulator, it can be easily deployed to robots with different embodiments in the real world. In particular, we present the Embodiment-aware Transformer (EAT), an architecture that casts this control problem as conditional sequence modeling. EAT outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired robot embodiment, past states, and actions, our EAT model can generate future actions that best fit the current robot embodiment. Experimental results show that EAT can outperform all other alternatives in embodiment-varying tasks, and succeed in an example of real-world evolution tasks: stepping down a stair through updating the morphology alone. We hope that EAT will inspire a new push toward real-world evolution across many domains, where algorithms like EAT can blaze a trail by bridging the field of evolutionary robotics and big data sequence modeling.
translated by 谷歌翻译
Persuasion modeling is a key building block for conversational agents. Existing works in this direction are limited to analyzing textual dialogue corpus. We argue that visual signals also play an important role in understanding human persuasive behaviors. In this paper, we introduce the first multimodal dataset for modeling persuasion behaviors. Our dataset includes 199 dialogue transcriptions and videos captured in a multi-player social deduction game setting, 26,647 utterance level annotations of persuasion strategy, and game level annotations of deduction game outcomes. We provide extensive experiments to show how dialogue context and visual signals benefit persuasion strategy prediction. We also explore the generalization ability of language models for persuasion modeling and the role of persuasion strategies in predicting social deduction game outcomes. Our dataset, code, and models can be found at https://persuasion-deductiongame.socialai-data.org.
translated by 谷歌翻译
Deep reinforcement learning has recently emerged as an appealing alternative for legged locomotion over multiple terrains by training a policy in physical simulation and then transferring it to the real world (i.e., sim-to-real transfer). Despite considerable progress, the capacity and scalability of traditional neural networks are still limited, which may hinder their applications in more complex environments. In contrast, the Transformer architecture has shown its superiority in a wide range of large-scale sequence modeling tasks, including natural language processing and decision-making problems. In this paper, we propose Terrain Transformer (TERT), a high-capacity Transformer model for quadrupedal locomotion control on various terrains. Furthermore, to better leverage Transformer in sim-to-real scenarios, we present a novel two-stage training framework consisting of an offline pretraining stage and an online correction stage, which can naturally integrate Transformer with privileged training. Extensive experiments in simulation demonstrate that TERT outperforms state-of-the-art baselines on different terrains in terms of return, energy consumption and control smoothness. In further real-world validation, TERT successfully traverses nine challenging terrains, including sand pit and stair down, which can not be accomplished by strong baselines.
translated by 谷歌翻译
Graphene quantum dots provide a platform for manipulating electron behaviors in two-dimensional (2D) Dirac materials. Most previous works were of the "forward" type in that the objective was to solve various confinement, transport and scattering problems with given structures that can be generated by, e.g., applying an external electrical field. There are applications such as cloaking or superscattering where the challenging problem of inverse design needs to be solved: finding a quantum-dot structure according to certain desired functional characteristics. A brute-force search of the system configuration based directly on the solutions of the Dirac equation is computational infeasible. We articulate a machine-learning approach to addressing the inverse-design problem where artificial neural networks subject to physical constraints are exploited to replace the rigorous Dirac equation solver. In particular, we focus on the problem of designing a quantum dot structure to generate both cloaking and superscattering in terms of the scattering efficiency as a function of the energy. We construct a physical loss function that enables accurate prediction of the scattering characteristics. We demonstrate that, in the regime of Klein tunneling, the scattering efficiency can be designed to vary over two orders of magnitudes, allowing any scattering curve to be generated from a proper combination of the gate potentials. Our physics-based machine-learning approach can be a powerful design tool for 2D Dirac material-based electronics.
translated by 谷歌翻译